Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
نویسندگان
چکیده
Ethidium bromide (EB) is known to inhibit cleavage of bacterial rRNA precursors by Escherichia coli ribonuclease III, a dsRNA-specific nuclease. The mechanism of EB inhibition of RNase III is not known nor is there information on EB-binding sites in RNase III substrates. We show here that EB is a reversible, apparently competitive inhibitor of RNase III cleavage of small model substrates in vitro. Inhibition is due to intercalation, since (i) the inhibitory concentrations of EB are similar to measured EB intercalation affinities; (ii) substrate cleavage is not affected by actinomycin D, an intercalating agent that does not bind dsRNA; (iii) the EB concentration dependence of inhibition is a function of substrate structure. In contrast, EB does not strongly inhibit the ability of RNase III to bind substrate. EB also does not block substrate binding by the C-terminal dsRNA-binding domain (dsRBD) of RNase III, indicating that EB perturbs substrate recognition by the N-terminal catalytic domain. Laser photocleavage experiments revealed two ethidium-binding sites in the substrate R1.1 RNA. One site is in the internal loop, adjacent to the scissile bond, while the second site is in the lower stem. Both sites consist of an A-A pair stacked on a CG pair, a motif which apparently provides a particularly favorable environment for intercalation. These results indicate an inhibitory mechanism in which EB site-specifically binds substrate, creating a cleavage-resistant complex that can compete with free substrate for RNase III. This study also shows that RNase III recognition and cleavage of substrate can be uncoupled and supports an enzymatic mechanism of dsRNA cleavage involving cooperative but not obligatorily linked actions of the dsRBD and the catalytic domain.
منابع مشابه
Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis
Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the prefer...
متن کاملCharacterization of a chlorella virus PBCV-1 encoded ribonuclease III.
Sequence analysis of the 330-kb genome of chlorella virus PBCV-1 revealed an open reading frame, A464R, which encodes a protein with 30-35% amino acid identity to ribonuclease III (RNase III) from many bacteria. The a464r gene was cloned and the protein was expressed in Escherichia coli using the chitin-binding intein system. The recombinant PBCV-1 RNase III cleaves model dsRNA substrates, in a...
متن کاملRegulation of ribonuclease III processing by double-helical sequence antideterminants.
The double helix is a ubiquitous feature of RNA molecules and provides a target for nucleases involved in RNA maturation and decay. Escherichia coli ribonuclease III participates in maturation and decay pathways by site-specifically cleaving double-helical structures in cellular and viral RNAs. The site of cleavage can determine RNA functional activity and half-life and is specified in part by ...
متن کاملCharacterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III
Members of the ribonuclease III family are the primary agents of double-stranded (ds) RNA processing in prokaryotic and eukaryotic cells. Bacterial RNase III orthologs cleave their substrates in a highly site-specific manner, which is necessary for optimal RNA function or proper decay rates. The processing reactivities of Escherichia coli RNase III substrates are determined in part by the seque...
متن کاملPurification and characterization of the Pac1 ribonuclease of Schizosaccharomyces pombe.
The pac1+ gene of the fission yeast Schizosaccharomyces pombe is essential for viability and its overexpression induces sterility and suppresses mutations in the pat1+ and snm1+ genes. The pac1+ gene encodes a protein that is structurally similar to RNase III from Escherichia coli, but its normal function is unknown. We report here the purification and characterization of the Pac1 protein after...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 29 9 شماره
صفحات -
تاریخ انتشار 2001